

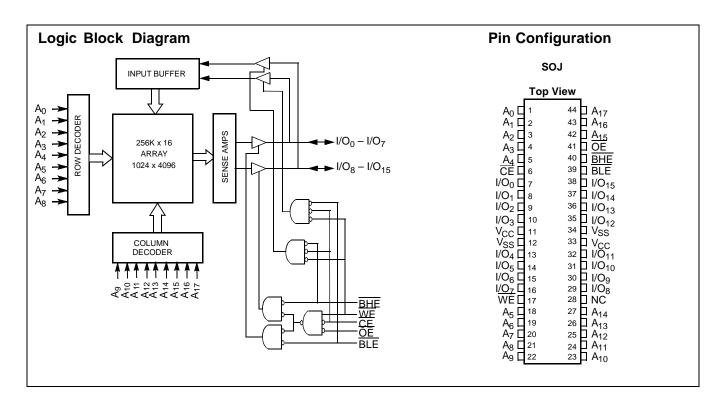
256K x 16 Static RAM

Features

- High speed
 - $-t_{AA} = 15 \text{ ns}$
- 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description

The WCFS4016C1C is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.


Writing to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified <u>on</u> the address pins $(A_0$ through A_{17}). If Byte High Enable (\overline{BHE}) is LOW, then data

from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The WCFS4016C1C is available in a standard 44-pin 400-mil-wide SOJ package.

Selection Guide

	WCFS4016C1C 15ns
Maximum Access Time (ns)	15
Maximum Operating Current (mA)	190
Maximum CMOS Standby Current (mA)	3

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature –65°C to +150°C

Ambient Temperature with Power Applied–55°C to +125°C

Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}\!\!-\!\!0.5V$ to +7.0V

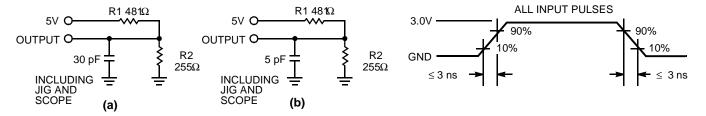
DC Voltage Applied to Outputs in High Z State $^{[1]}$ –0.5V to V CC + 0.5V

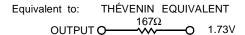
DC Input Voltage $^{[1]}\!\!=\!\!0.5\mathrm{V}$ to $\mathrm{V_{CC}}$ + $0.5\mathrm{V}$ Current into Outputs (LOW)20 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}	
Commercial	0°C to +70°C	$5V \pm 0.5$	

Electrical Characteristics Over the Operating Range


		Test Conditions	WCFS401	6C1C 15ns	
Parameter	Description		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$	-1	+1	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$		190	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$		40	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{split} & \underline{\text{Max}}. \ V_{\text{CC}}, \\ & \overline{\text{CE}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \text{f} = 0 \end{split}$		3	mA



Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

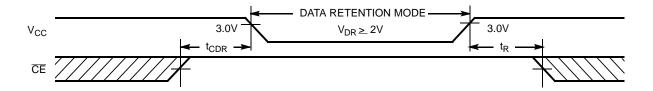
- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

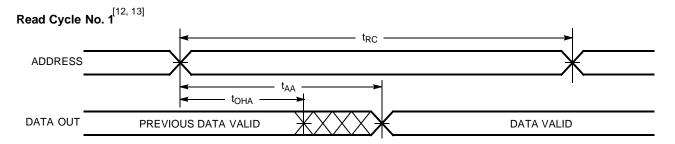
Switching Characteristics^[4] Over the Operating Range

		WCFS401			
Parameter	Description	Min. Max.		Unit	
READ CYCLE		<u>.</u>			
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		ms	
t _{RC}	Read Cycle Time	15		ns	
t _{AA}	Address to Data Valid		15	ns	
t _{OHA}	Data Hold from Address Change	3		ns	
t _{ACE}	CE LOW to Data Valid		15	ns	
t _{DOE}	OE LOW to Data Valid		7	ns	
t _{LZOE}	OE LOW to Low Z	0		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		7	ns	
t _{LZCE}	CE LOW to Low Z ^[7]	3		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		7	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		15	ns	
t _{DBE}	Byte Enable to Data Valid		7	ns	
t _{LZBE}	Byte Enable to Low Z	0		ns	
t _{HZBE}	Byte Disable to High Z		7	ns	
WRITE CYCLE[8	3, 9]	<u>.</u>			
t _{WC}	Write Cycle Time	15		ns	
t _{SCE}	CE LOW to Write End	12		ns	
t _{AW}	Address Set-Up to Write End	12		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	12		ns	
t _{SD}	Data Set-Up to Write End	8		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{LZWE}	WE HIGH to Low Z ^[7]	3		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		7	ns	
t _{BW}	Byte Enable to End of Write	12		ns	

Notes:

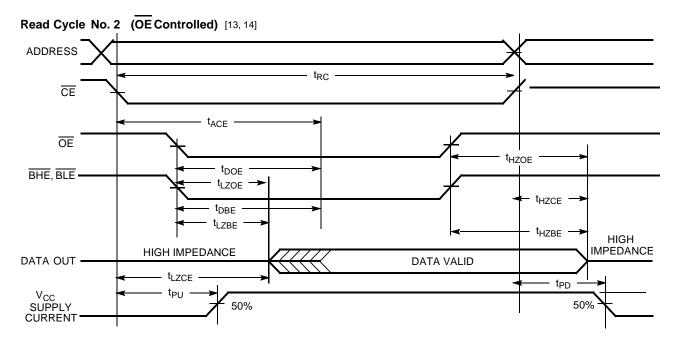
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.


 This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation
- 6.
- is started.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


Data Retention Characteristics Over the Operating Range

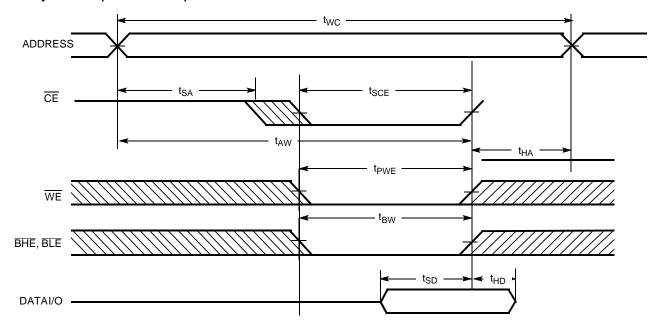
Parameter	Description	Conditions ^[11]	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$\frac{V_{CC}}{CE} = V_{DR} = 3.0V,$ $CE \ge V_{CC} - 0.3V,$	0		ns
t _R ^[10]	Operation Recovery Time	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	t _{RC}		ns

Data Retention Waveform

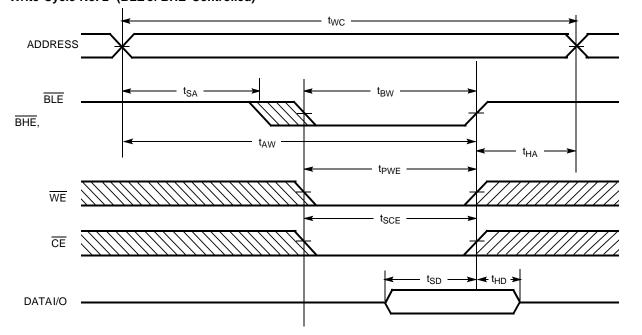

Switching Waveforms

- 10. t_f ≤ 3 ns for the -12 and -15 speeds. t_f ≤ 5 ns for the -20 and slower speeds
 11. No input may exceed V_{CC} + 0.5V
 12. Device is continuously selected. OE, CE, BHE, and/or BHE = V_{IL}..
 13. WE is HIGH for read cycle.

Switching Waveforms (continued)


Notes:

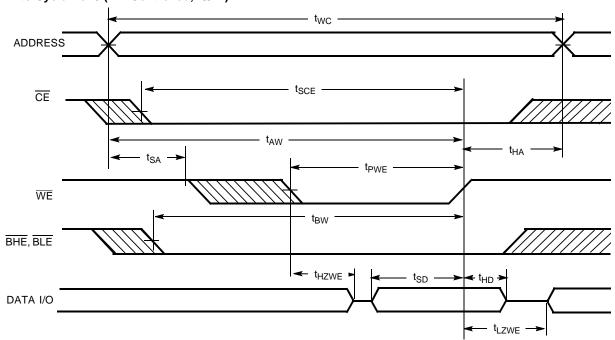
14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW..



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled) [15, 16]

Write Cycle No. 2 (BLE or BHE Controlled)


Notes:

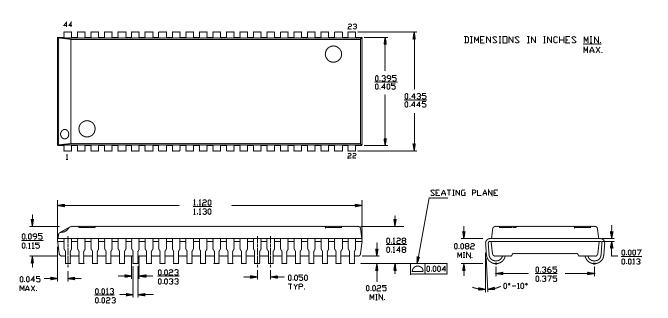
^{15.} Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, LODEW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Χ	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	WCFS4016C1C-JC15	٦	44-Lead (400-Mil) Molded SOJ	Commercial

Package Diagrams

44-Lead (400-Mil) Molded SOJ J

Document Title: WCFS4016C1C 256K x 16 Static RAM				
REV. Issue Orig. of Change			Description of Change	
**	4/19/02	XFL	New Datasheet	